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involving "corner" activation of the cyclopropane ring by Tl(III). 
The attack of the thallic ion at the "corner" of the cyclopropane 

parallels the reactivity of the mercuric ion and the proton, allowing 
similar orbital arguments3 to be used. Neither Hg2+ nor Tl3+ is 
a good back-donor so that the back-donation of their dT electrons 
to the LUMO Walsh orbital is negligible; therefore the "edge" 
activation is apparently disfavored. On the other hand, the ob­
served corner attack by Tl3+ (and Hg2+) reflects the favorable 
interaction of the degenerate HOMOs of the cyclopropane with 
vacant d orbitals on the metal. Our experiments thus provide 
further support for the mechanistic picture and orbital consid­
erations recently published by Coxon et al.3 We are confident 
that our results furnish an additional example required for the 
generalization of the original rationalization3 which was derived 
from the behavior of only one nontransition metal. Moreover, 
the rearrangement of the cyclopropyl alcohol 1 represents an 
attractive synthetic avenue for the stereoselective construction of 
the oxa-triquinane skeleton or of spirocyclic lactones. Although 
the experiments were confined to the steroidal skeleton, we believe 
that our finding is of a general nature and might be used as the 
key step for the construction of complex natural products. 
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Scheme I 
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The great advantages of the present version of the carbonyl-ene 
reaction are ( I ) the highly regiocontrolled introduction of a 
potential functionality based on vinylsilane* and (2) the re­
markable enhancement of diastereoselectivity and the dramatic 
changeover in olefinic stereoselectivity. 

First, the use of vinylsilane ( I ) 5 as an ene is found to alter the 
regiochemical course in the glyoxylate-ene reaction to give the 
vinylsilane product 2 as a single regioisomer (eq 3).6 The highly 
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Control of the sites of C-H bond activation and C-C bond 
formation is of current interest for synthetic exploitation in carbon 
skeletal construction. In principle, the ene reaction involving 
carbonyl enophiles (Scheme I) is the simplest way for C-C bond 
formation, which converts readily available alkenes, with sub­
stitution for allylic C-H bond and allylic transposition of the C=C 
bond, into more functionally complex derivatives.1 However, the 
synthetic utility of the carbonyl-ene reaction has been oversha­
dowed by the lack of regioselectivity when applied to unsymme-
trical alkenes (eq 1). 

Herein we report the first example of the Lewis acid promoted 
carbonyl-ene reaction with vinylsilane as an ene,2 which provides 
a solution to this regiochemical problem and constitutes a highly 
stereocontrolled version of a carbonyl-ene reaction (eq 2). The 
key feature in the regio- and stereochemical control of the con­
certed process3 lies in the steric bulkiness of the trialkylsilyl group.4 
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(3) The mechanism of Lewis acid promoted ene reactions has been the 
subject of controversial discussions (a concerted pericyclic vs stepwise cationic 
mechanism): Snider, B. B.; Ron, E. J. Am. Chem. Soc. 1985,107, 8160, and 
references therein. However, a cationic reaction with vinylsilane should 
provide the other substitution product via a favorable /3-silyl cation,4 not the 
ene-type product arising from an unfavorable a-silyl cation. Thus, the present 
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regiocontrolled ene reaction with vinylsilane is in sharp contrast 
to the ene reaction with 1,2-disubstituted alkene without a silyl 
group, which gives a mixture of regioisomers under the same 
reaction conditions.7 The observed regiocontrol can be explained 
on the basis of the six-membered transition-state model8 by an 
enhanced steric interaction of SiMe3 and CO2Me relative to that 
of H and CO2Me in A. Thus, the vinylsilane 2a would be formed 
regioselectively via the transition state B. 
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Oxford, 1982; Vol. 7, Chapter 48. 
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(6) A high level of regiocontrol is also found in the ene reaction of form­
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(7) A methylene hydrogen has been reported to be twice as reactive as a 
methyl or methine hydrogen after correction for statistical factors.1 
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The introduction of a silyl group into the ene component is also 
effective for the enhancement and/or the changeover in diast-
ereoselectivity (eq 4). The reaction with "f/ww"-vinylsilane lb 
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is found to give the threo product with remarkably enhanced 
selectivity (98%) as compared with fra/u-2-butene8 (82%). In 
sharp contrast, the dramatic changeover in diastereoselectivity 
from threo8 to erythro is observed for the ene reaction with 
"ci'.s"-vinylsilane lb. Both the enhancement and changeover in 
diastereoselectivity are explicable in view of the greatly increased 
1,3-repulsion of SiMe3 and CO2Me in the transition state D. 

The controlling effect of the silyl group on the stereochemistry 
is highlighted by the changeover of the olefinic stereoselectivity 
from trans to "cis" (eq 5). Trans selectivity (ca. 90%) is widely 

SlMe3 CH2O 

Me1AlCl 
(52%) 

85 

"trans" "cis" 

recognized for the ene reaction with alkenes without silyl group.1,9 

In direct contrast, the reaction of formaldehyde with vinylsilane 
Ic provides "c/5"-homoallyl alcohol 4c with high (98%) selectiv­
ity.10 Dramatic changeover into "cis" selectivity is explained in 
terms of the large 1,2 steric repulsion between SiMe3 and R in 
E leading to the "trans" product. 

The unprecedented "cis" selectivity should find its application 
to the synthesis of leukotriene B4 (LTB4) featuring a "ciV-

(9) The ene reaction of formaldehyde with 4- or 1-octene has been reported 
to give the Wanj-homoallyl alcohol (ca. 90% selectivity): Snider, B. B.; Rodini, 
D. J.; Kirk, T. C; Cordova, R. J. Am. Chem. Soc. 1982, 104, 555. 

(10) The stereoisomeric ratio was determined by a combination of HPLC 
and IR analyses after protodesilylation via the reported procedure.5 

homoallyl alcohol unit." Thus, the ene reaction of silylpropynal 
with vinylsilane Id affords the disilylated enynol 6d with a high 
level of "cis" selectivity (>99%),12'13 which serves as a key in­
termediate of LTB4.
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In conclusion, we have described here the Lewis acid promoted 
carbonyl-ene reaction with vinylsilanes, which allows the highly 
regio- and stereocontrolled introduction of vinylsilane functionality. 
These results clearly show the dramatic effect of silicon as a 
controlling element for not only the regio- but also the stereo­
chemistry. 
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Although an understanding of the factors that control relative 
stereochemistry in radical cyclization reactions has matured 
rapidly,2 it remains to be shown that radical reactions are generally 
useful for dictating acyclic stereochemistry—either relative or 
absolute.3,4 We now demonstrate that chiral radicals derived from 
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